

St. Ann's College for Women (Autonomous), Affiliated to Osmania University Accredited 'A+' Grade by NAAC (3rd Cycle) College with Potential for Excellence by UGC ISO 9001: 2015-ISO 14001: 2015 Hyderabad- 500028, Telangana, India

3.3.1 Initiatives for the creation and transfer of knowledge/technology

Design and development of teaching Kits for School Students

The endeavor to design teaching kits for science experiments was undertaken with the aim of promoting practical, hands-on learning experiences for students. These kits allow students to engage actively in experiments that enhance their understanding of various topics. Students were divided into groups and were given the task of designing Teaching Kits on topics pertaining to Carbohydrate Analysis: Understanding the chemistry of carbohydrates through qualitative analysis. Testing Milk Adulterants: Demonstrating methods to identify common adulterants in milk. Concept of pH: Explaining the significance of pH and conducting experiments related to acid-base reactions. Chromatography Techniques: Introducing the principles of chromatography and its applications. Molecular Biology Experiments: Involving the isolation of DNA from cells, offering insights into genetic material.

As part of this activity students were supposed to create content on Design of the experiment which included principles, procedures, observation tables and worksheets. Also all the reagents required to conduct the experiment, along with samples was provided in the kit.

The designed kits were used in schools to demonstrate the experiments.

Outcomes

1. Enhanced Learning Experience:Students actively participated in the design and development of teaching kits, which deepened their understanding of the underlying scientific principles.By creating content such as experiment principles, procedures, observation tables, and

worksheets, students had to consolidate their knowledge, making it easier to explain and share with others.

2. Improved Concept Comprehension:

The teaching kits facilitated a better understanding of complex scientific concepts. For instance, students gained a clearer grasp of carbohydrate analysis, milk adulteration detection, pH concepts, chromatography techniques, and molecular biology experiments.

3. Hands-On Engagement: These teaching kits encouraged students to engage in hands-on learning, promoting critical thinking and problem-solving skills. Practical experiments reinforced theoretical knowledge and allowed students to witness scientific principles in action.

4. Application of Scientific Methodology: Students learned how to apply the scientific method, from formulating hypotheses to conducting experiments, gathering data, and drawing conclusions. They gained insights into the importance of controlled variables and accurate data recording.

5. Collaborative Learning: Group work was essential in the design and development of these teaching kits. Students learned to collaborate effectively, distribute tasks, and pool their knowledge and skills.

6. Real-World Relevance: The kits focused on real-world applications, such as detecting milk adulterants or understanding the importance of pH in daily life. This approach made science more relatable and relevant for students.

7. Practical Skills Development: Students acquired practical laboratory skills, including proper handling of chemicals and equipment, safety protocols, and experimental techniques.

The kits promoted a sense of responsibility and care in the laboratory environment.

8. Knowledge Sharing: The teaching kits served as a medium for students to share their knowledge with peers and younger students in schools, reinforcing their own understanding while helping others learn.

9.. Teacher-Student Interaction:Teachers played a guiding role in this activity, providing valuable feedback and clarifications, strengthening the teacher-student relationship.

Designing and developing teaching kits for science experiments proved to be an effective way to enhance science education. The outcomes of this activity include improved learning experiences, better comprehension of scientific concepts, practical skill development, and the promotion of teamwork and independent problem-solving abilities. These kits serve as valuable tools for both teachers and students, making science education more engaging and impactful.

S.No	Name of the	Hall Ticket	Title of the Kit Developed
	student	number	
1.	120420488001	Hafsa Anam	Qualitative analysis of Carbohydrates.
2.	120420488002	Amena	Demonstration of Chromatography Techniques.
		Mohammadi	
3.	120420488003	Shimaliya	Testing Milk adulterants.
		Rooman	
4.	120420488004	Sofia Ifteqar	Testing Milk aduletrants.
5.	120420488005	Ayesha Ghori	Demonstration of Chromatography Techniques.
6.	120420488006	Katari Lahari	Determination of pH Experiments.
7.	120420488007	Yanamala	DNA Extraction kit.
		Deekshitha Lehari	
8.	120420488009	Ayesha Sania	Testing Milk aduletrants.
9.	120420488011	Syeda Maria	Demonstration of Chromatography Techniques.
		Hussain	
10.	120420488012	Sarah Hunachagi	Demonstration of Chromatography Techniques.
11.	120420488013	Nafiya Khan	Qualitative analysis of Carbohydrates.
12.	120420488015	Gambo Anupama	Qualitative analysis of Carbohydrates.
13.	120420488018	Rajasmita Sabat	DNA Extraction kit.
14.	120420488019	Saba Shireen	Qualitative analysis of Carbohydrates.
15.	120420488020	Rodda Shreya	DNA Extraction kit.
16.	120420488021	Tannu Sree Rajput	DNA Extraction kit.
17.	120420488023	Vadla Pranavi	Qualitative analysis of Carbohydrates.
18.	120420488024	Juveria Tanveer	Testing Milk adulterants.
19.	120420488025	Mansi M Dama	DNA Extraction kit.
20.	120420488027	Medarametla	Determination of pH Experiments.
		Akshitha Reddy	
21.	120420488028	Thota Gowthami	Determination of pH Experiments.
22.	120420488029	Yanna Indumathi	Determination of pH Experiments.
23.	120420488030	Dabbikar Sahithi	Determination of pH Experiments.

List of students -Development of Teaching kits

Demonstration of science concepts using kits developed

